In Floor Heating

Heating and Tiling

In Floor Heating and Tiling are master tilers who provide under tile heating and guarantee heat. Free Quotes in the Johannesburg area.


Harry - 082 697 8377 / 011 682 2217

Tile Heating Info

Underfloor heating is a form of central heating which utilizes heat conduction and radiant heat for indoor climate control, rather than forced air heating which relies on convection. Heat can be provided by circulating heated water or by electric cable, mesh, or film heaters.

Underfloor heating can be used with concrete and wooden floors, with all types of floor covering (e.g., stone, tile, wood, vinyl, and carpet), and at ground level or upstairs. Choice of floor finishing requires careful consideration, because changes of floor finish may affect performance.

Electric floor heating systems have very low installation cost for smaller spaces (1-5 rooms) because they are easy to install and have a very low start-up cost. Although electric floor heating systems work well as a primary heat source, most systems are installed in the bathroom to add comfort and warmth to cold tile.

Electric floor heating systems are also typically installed in kitchens or in rooms that require additional heat.

Another advantage of electric underfloor heating over a warm-water system is the floor build up/height. Floor build up can be as little as 1 mm. The electric cables are usually installed onto an insulation board or directly onto the subfloor or padding (under carpet or laminate); then the floor covering is placed directly over the heating system or thinset.

Electric underfloor heating also benefits from faster installation times, with a typical installation only taking half day to a day depending on size to install. Also warm up times are generally a lot quicker than "wet" systems because the cables are installed directly below the finished flooring making it a direct acting heat source rather than a storage heater.

Electric system used to be supplied as one long continuous length of cable with the consumer having to weave the cable up and down the floor at a pre-determined spacing and making a return loop to complete the circuit. The main problem with this was that the installation was time consuming, and also the risk of hot and cold spots due to uneven cable spacing; the closer together the cable the more heat was given off, and visa versa. With today’s technology most modern cables have a built in return, meaning that you only have one end to connect instead of having to bring the end of the cable back to the start to make a full circuit. These are excellent and make the installation a lot easier. With the introduction of the built in return came the “cable mat”. These have revolutionised the electric underfloor heating market due to the simplicity of the installation. Cable mats have taken the hard work out of the installation by having the heating cable already pre-spaced on to a nylon mesh. All you have to do is simply start at your thermostat location and roll it out over the floor until it’s all used up. These save time and offer less risk of having hot and cold spots.

One technique is to lay the heating cable directly onto an insulated concrete floor and then apply tile on top of it. Where time-of-use electricity metering is available, this type of system can be turned on at night when electricity rates are low, and then allowed to warm the house during the day by relying on the heat energy held within the thermal mass of the concrete.

Sometimes, in order to mimimize floor buildup, a screen or carbon film heating element is used. These systems are normally installed onto a thin insulation underlay (approx 6mm) to reduce thermal loss to the sub-floor. Carbon film is used under various floor finishes, traditionally laminate flooring or engineered wood. Vinyls, carpets and other "soft" floor finishes can be heated using carbon film elements, provided a suitable overboarding system is used.

In comparison to combustion/hydronic systems, electric systems can be more efficient, if only the efficiency of the equipment in the building is considered. However, as discussed in the article on electric heating, the efficiency of generating electricity from fossil fuels is low, so overall system efficiency is significantly lower than combustion/hydronic systems. Electric systems have the advantage of needing no maintenance and can more easily be controlled to run when and where they are needed.